Journal of Artificial Intelligence and Computer Science (JAICS) - 2024

THE IMPACT OF REGULARISATION ON LINEAR REGRESSION BASED MODEL

Ambrose Nwosu®", Gilbert Imuetinyan Osaze Aimufua?, Binyamin Adeniyi Ajayi>*'and Morufu Olalere*

L.2.3Department of Computer Science, Nasarawa State University, Keffi, Nigeria
“Department of Cybersecurity, National Open University, Jabi, Abuja, Nigeria

JAICS, v.1, no.1, 2024
Received: 17/06/2024
DOI: <https://www.doi.org/10.5281/zenodo.13118703>

Accepted: 23/07/2024  Published: 28/07/2024

ABSTRACT

This paper aims to analyse the effects that regu-
larisation has on linear regression models while
concentrating on Lasso (L1) and Ridge (L2) meth-
ods. Academic Rigor definition is one of the ar-
eas in which Regularisation helps in regression
modelling since it minimises the overfitting and
multicollinearity issue by putting tight constraints
on the values of the coefficients to make the mod-
els more balanced and easier to understand. To
optimise the hyperparameters of the models, we
employed cross-validation, and to apply the sug-
gested forms of regularisation, we used the Materi-
alise Python scikit-learn library. Finally, the results
show that Lasso and Ridge possess a great poten-
tial to increase the performance of models, which
may be indicated by improvements in such indica-
tors as MSE, MAE, and R2. Diagnostic plots and
curves like scatter plots, residual diagnostic plots
as well as learning curves were used to analyse the
operational performance of the models. It showed
that in terms of feature selection Lasso performs
better than Ridge with correlated features man-
aged by Ridge Regression. The F-test of the Statisti-
cal analysis provided supporting evidences for the
regularisation effects. The guidelines suggest the
importance of feature extraction or construction,
data pre-processing, and cross-validation during
the tuning of parameters. Further, scholars must
consider other more complex regression models
such as Elastic Net, and their broad practical appli-
cability at a higher level. This work therefore draws
attention to the issue of regularisation as a useful
and significant tool to ameliorate the precision, ro-
bustness, and transferability of linear regression
models.

Keywords: MSE, MAE, R? Lasso (L1), Ridge (L2), Elas-
tic Net.

1. INTRODUCTION

inear regression is one of the most basic statis-

tical models commonly employed in predictive
analytics and inferential studies. Its main goal is to
describe the effect of one or more independent vari-
ables on a dependent variable using a straight line
that best suits the collected data. Linear regression
is easy to understand and implement, and hence
is used across disciplines and in different fields of
study such as economics, biology, engineering, and
social sciences. Linear regression plays a role of ba-
sics in machine learning as it is used in developing
other models. They can cover real valued outputs
like house prices, stock values, and also serve as
the benchmark models to compare other advanced
techniques. In fact, linear regression can be used to
identify quantitative relationships, and that cannot
be overemphasised.

2. CHALLENGES OF OVERFITTING IN
LINEAR REGRESSION MODELS

Linear regression is one of the most basic statis-
tical models commonly employed in predictive an-
alytics and inferential studies. Its main goal is to
describe the effect of one or more independent vari-
ables on a dependent variable using a straight line
that best suits the collected data. Linear regression
is easy to understand and implement and hence
is used across disciplines and in different fields of
study such as economics, biology, engineering, and
social sciences. Linear regression plays a role of ba-
sics in machine learning as it is used in developing
other models. They can cover real-valued outputs
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like house prices, and stock values, and also serve as
the benchmark models to compare other advanced
techniques. In fact, linear regression can be used to
identify quantitative relationships, and that cannot
be overemphasised.

2.1. Introduction to Regularisation Tech-
niques

To overcome over fitting one has to use a pro-
cess known as regularisation which is used to either
bound or penalize the model. This is achieved by
employing a penalty function which is incorporated
into the loss function used in the training of the
model. Three most popular approaches to model
regularisation are L1 regularisation also known as
Lasso and L2 regularisation also known as Ridge,
and Elastic Net that contain elements of both.

2.1.1. L1 Regularisation (Lasso)

Adds an absolute worth of the coefficients to the
misfortune capability. It prompts meager models as
certain coefficients can be headed to nothing and
highlights choice (EMMERT-STREIB; DEHMER,
2019)

2.1.2. L2 Regularisation (Ridge)

Adds the squared worth of coefficients to the mis-
fortune capability to restrict the intricacy of the
model. It additionally assists with limiting the great-
ness of the coefficients however doesn’t make the
coefficients equivalent to nothing. It has been found
that L2 regularization performs moderately better
compared to L1 in handling multicollinearity.(KAN
et al., 2019)

2.1.3. Elastic Net

This choice consolidates both L1 and L2 punish-
ments. It is helpful in circumstances where there
is more than one component included which in-
fluences one another(LI et al., 2019). The justi-
fication behind applying Regularization is on the
grounds that it assists with abstaining from over-
fitting the model by adding a fine for enormous
loads to give improved results to concealed infor-
mation(MORADI; BERANGI; MINAEI, 2020).

3. LITERATURE REVIEW

It appears that Regularisation is highly related
to linear regression models because it eliminates

over-fitting by introducing a penalty for model com-
plexity. It assists in the sense that it minimises com-
plexity in input space that may be brought about by
noisy training data and thus generalise well with
other data. Among them are L1 (Lasso), L2 (Ridge),
and Elastic Net that have been discussed in de-
tail and are applied in various settings. (AHRENS;
HANSEN; SCHAFFER, 2020) dedicate a lot of at-
tention to the topic of regularised regression models
with an emphasis on the ways to solve them with
the help of software such as Stata. In our work,
it gives some insight on how Lasso and Ridge re-
gression aids in model selection and prediction in
high-dimensional datasets where normal linear re-
gression models do not work because they are af-
fected by multicollinearity and overfitting problems.
Their work shows that when the models are regu-
larised their performances are far better than those
of standard models when it comes to forecasting per-
formance and stability. (BALESTRIERO; BOTTOU;
LECUN, 2022) discuss regularisation and data aug-
mentation stating that regularisation in this context
has class-dependent gains. Specifically, it confirms
the need for the proper choice of regularisation pa-
rameters that are appropriate for some datasets and
tasks. This study aims to prove that regularisation
works and is credible in improving performance by
reducing overfitting and improving the capability
of the model to generalise, most relevant in neu-
ral networks. (CHEN et al., 2019) used linear re-
gression, regularisation, and machine learning in
model selection and spatial models for environmen-
tal pollutants. Ridge and Lasso have shown that
with regularised linear regression model than tra-
ditional linear regression for better predictive per-
formance. It is further illustrated in this study that
high dimensional environmental data requires reg-
ularisation for model accuracy and interpretability.
Here, (EMMERT-STREIB; DEHMER, 2019) expand
on high-dimensional Lasso-based computational
regression models with an emphasis on the advan-
tages of regularisation, shrinkage, and variable se-
lection. Their work points out that it is necessary to
assess and apply regularisation techniques to avoid
overfitting when working with high-dimensional
data and when there is multicollinearity between
variables. The work also addresses the issue of the
selection of relevant features with the help of the
Lasso-based modelling, which has a positive impact
on the model interpretability and accuracy.



4. THE AIM OF THE WORK

The purpose of this paper is to compare the per-
formance of linear regression models generalised
using regularisation techniques to the baseline per-
formance of the Linear Regression Model. This en-
tails an examination of aim-based enhancements
like L2 regularisation (Ridge) and stable methods
like F-tests for enhancing performances within var-
ious analyses, particularly those operating under
high dimensions. In empirical and coding examples,
the study will demonstrate the application of the
regularisation concepts in real-life problems, with
an aim of training the readers on how to employ
such techniques in practice. Moreover, by achiev-
ing these objectives, the research aims to advance
the knowledge of regularisation in linear regres-
sion, and provide useful solutions to the current
state of the art. Such approaches will be of crucial
importance in regularisation that is used to design
precise, precise, and comprehensible models, thus
solving such substantial issues as overfitting and
multicollinearity.

5. METHODOLOGY

5.1. Data Sources

To give an overall analysis of the effects of regular-
isation to linear regression models, we use artificial
data and actual datasets. Such an approach also
serves as a quality control mechanism to ensure
that the findings are valid for different types of data.

5.1.1. Simulated Data

It is also important to note that the synthetic
datasets are customised to our specifications de-
pending on the particular variables and conditions
that we want to study. This is accomplished by
changing the number of features, by changing the
degree of collinearity or the amount of noise. Ac-
tual data can be gathered for analysis on whether
different regularisation approaches improve accu-
racy but results cannot be compared to data that
are artificially created to test the effectiveness of
these regularisation techniques. For instance, we
can incorporate ignorance variability in order to
evaluate the impact of the regularisation methods
in the noisy data. A data sample of 1000 records
containing 100 independent variables with correct
pairing of features and variables but the reverse is
not true. This can assist us in putting into measure

the comparison of the different regularisation tech-
niques that have been done in this research.

5.1.2. Real-World Datasets

Air Quality Data - This dataset includes actu-
ally measured air quality concentrations of nitro-
gen dioxide (NO2) and fine particulate matter (PM
2.5) in multiple monitoring stations in the Europe
(CHEN et al., 2019). It also matters to note that the
size of the input data is large and so it has many
features hence, it may cause Multicollinearity.

Healthcare Cost Data- This dataset contains infor-
mation about older adult’s healthcare expenditure
and the other factors like age, gender, and the pres-
ence of other diseases(KAN et al., 2019). In the
present work the independent variable can be ei-
ther continuous or categorical while the dependent
variable is the cost of healthcare predicted from the
dataset.

Purpose - Real-world data sets presented here
show actual instances where the proposed regulari-
sation could be applied. It helps in confirming the
findings from the simulated data and gives a sense
of the importance of regularisation methods in dif-
ferent disciplines.

5.2. Experimental Design

To ensure a standardized evaluation process for
the different regularization techniques, we follow a
specific experimental design:

5.2.1. Data Preprocessing

« Standardisation: All the predictor variables are
scaled to have a zero mean and unit variance
which makes their scales commensurate. This
makes certain that all the features experience
the similar magnitude of regularisation penal-
ties.

« Train-Test Split: This section includes the self-
created datasets that are split into training and
testing sample, with 70% of the sample serving
for training purposes and 30% for testing pur-
poses. It creates a balanced way of testing the
ability of the model in predicting newer data
that has not been trained on..

 Cross-Validation: All the predictor variables are
scaled to have a zero mean and unit variance
which makes their scales commensurate. This
makes certain that all the features experience



the similar magnitude of regularisation penal-
ties.

5.2.2. Model Training

o Baseline Model: In order to have a benchmark,
a linear regression model is trained with no
complexity and no regularisation.

. Regularised Models

1. L2 Regularisation (Ridge Regression): From the
training set, a linear regression model with an
L2 penalty is built with different values of the
regularisation parameter (1). As for the 4, it
has been chosen in order to maximise cross-
validation performance.

2. L1 Regularisation (Lasso Regression): A linear
regression model with an L1 penalty is trained
with different A to tune the model. The value
for A is chosen by cross-validation.

3. Elastic Net: Standard L1 and L2 regularisa-
tion is used where the parameter o determines
which of the two is more dominant. The differ-
ent values of o and 1 are then tested and the
best set of values as applied.

5.4. Model Evaluation
5.4.1. Performance Metrics

The performance of the models is evaluated using
test statistics such as Mean Squared Error (MSE),
Root Mean Squared Error (RMSE) and R-squared
(R?). These metrics provide general measure of er-
ror and statistical appropriateness of the models.

5.4.2. Statistical Techniques

We will employ statistical techniques to evalu-
ate the effectiveness of regularization and identify
significant features:

1. L2 Regularisation (Ridge Regression):
n p
Minimize Z(yl- — D)+ /12 B;
i=1 j=1

« Effect: L2 regularisation moves the coef-
ficients toward zero but keeps them non-
zero. This comes in handy when dealing
with multicollinearity as well as simplify-
ing the model while excluding none of the
features.

2. L1 Regularisation (Lasso Regression):

P p
Minimize|y; — 9;,)* + 4, Z 181 + 4, Zﬁf
j=1 j=1
« Effect: L1 regularisation can make certain
coefficients equal to exactly zero, thus se-
lect features. This makes the model easier
to understand and interpret since only the
significant features are retained.

3. Elastic Net Regularisation:

n p p
Minimize Z(yi -9+ Z 1B;] + /12216]2-
i=1 Jj=1 J=1

» Effect: Thus, Elastic Net offers the advan-
tages of both L1 and L2 regularisations,
making it another form of regularisation
that is flexible and useful in a wide range
of data contexts.

4. F-tests:

F-tests are employed in Model comparison and
Testing of groups of variables for significance.
They help to determine whether incorporat-
ing other predictors increases the model sig-
nificantly. In the case of regularised models,
we can then perform F-tests of the baseline and
the regularised models to check whether the
regularisation terms improve the model.

_ (SSE, — SSE,)/p, — P

SSE,/(n — p,)

By employing these statistical techniques and
methodologies, it will be possible to cover the
evaluation of regularisation techniques in lin-
ear regression models adequately. The kind of
experiments that will be carried out will show
the pros and cons of each and how to use them.

6. THE APPROACH

The process of developing regularised linear mod-
els often begins with the data gathering phase where
large and balanced datasets are gathered. This data
should also incorporate the level of variation within
the application domain to make the model accu-
rate and efficient in practice (CHEN et al., 2019).
The process that follows data collection is data pre-
processing. Here any missing values are handled,
outliers are dealt with and normalisation/standard-
isation is performed on the data in preparation for



the modelling stage. All these steps of preprocess-
ing are important in improving the performance
and accuracy of the model (AHRENS; HANSEN;
SCHAFFER, 2020). In the next step of data pre-
processing, feature engineering takes place. This
step involved defining or creating the features that
would be used in the different models. While choos-
ing the highlights accurately, we can notice a lot
higher exactness and speed of the model (KONG
et al., 2020). In this manner, the information parts
into the preparation dataset and the testing dataset
to assess the adequacy of the model. The follow-
ing stage is model preparation, where the straight
regression model is worked with the assistance of
the preparation dataset. L1 (Lasso) and L2 (Ridge)
are the two principal strategies of the regularisa-
tions that are utilized to limit overfitting by putting
a punishment to the model intricacy (EMMERT-
STREIB; DEHMER, 2019). They help in decreasing
multicollinearity and additionally in working on the
outside legitimacy of the model to different informa-
tion (MORADI; BERANGI; MINAEI, 2020). At the
point when the model has been fabricated, hyperpa-
rameters are tuned utilizing strategies, for example,
cross-approval to decide the best upsides of hyper-
parameters. This step guarantees the model accom-
plishes the best outcomes by keeping away from
overfitting as well as underfitting the information
(PILLONETTO et al., 2022). At last, in light of the
testing informational collection, the viability and
accuracy of the model is additionally determined.

6.1. Software and Tools

It is critical to take note of that when confronted
with the need to construct standard straight regres-
sion models, there is a choice to utilize some product
and instruments. Python is famous in light of the
fact that it is upheld by an extraordinary number
of libraries, and on the grounds that it requires less
code to write in contrasted with different dialects.
Al libraries, for example, scikit-learn give standard
executions of the majority of the typical regulariza-
tion strategies, and can be utilized for model fitting
and assessment (WEI et al., 2019). Stata is likewise
one more programming frequently applied for fac-
tual modelling and assembles, including LASSO
regression through the lassopack bundle (AHRENS;
HANSEN; SCHAFFER, 2020).

6.2. Implementation Details

The use of regularised linear models is aligned
with particular algorithms as well as libraries. Re-
garding linear regression and regularisation in
Python, scikit-learn is very useful and functional
library that provide all necessary tools. There are
some standard approaches, which can be directly
used for building stable regression models such as
Lasso (L1 regularisation) and Ridge (L2 regularisa-
tion) (EMMERT-STREIB; DEHMER, 2019). It is
often found that the following steps are included in
using such models import the necessary packages,
load the data, data pre-processing, feature engineer-
ing and selection, split data into train and test, train
and select using regularisation, and measure using
the right indicators. The cross validation made dur-
ing the training phase ensures that the hyperparam-
eters are adjusted to make the model both precise
and versatile in handling any data set.

7. MODELLING AND EVALUATION OF
VISUAL REPRESENTATION

7.1. Model Training

The following steps are laid down for training ef-
fective and efficient regularised linear regression
models; First and foremost, the dataset is split into
the training and testing data in order to get the
most objective results. This is worthwhile as in it
guarantees that the model will have the option to
sum up to future information tests. This is trailed
by Lasso (L1 regularization) and Ridge (L2 regu-
larization) to manage overfitting issues and mul-
ticollinearity in direct relapse models (EMMERT-
STREIB; DEHMER, 2019). While preparing the
model, cross approval is utilized to decide the best
hyperparameters which gives the best exhibition.
This should be possible by separating the prepara-
tion information into a few overlaps and then, at
that point, preparing the model with various mixes
of these folds. The approval set is utilized to assess
the exhibition of the model in view of the given hy-
per boundary and this is finished for a few hyper
boundaries to track down the best hyper boundaries
(PILLONETTO et al., 2022). For instance, Python
has scikit-learn - an assortment of devices to per-
form cross-approval and change boundaries. This
cycle should be possible by utilizing GridSearchCV
capability which improves the hyperparameters of
the model by testing its exactness inside cross folds
of the preparation dataset (WEI et al., 2019).
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Code 1. Model Building.

from sklearn.linear_model import
Ridge,
from sklearn.model_selection import
GridSearchCV
from sklearn.metrics import
mean_squared_error
import numpy as np

Lasso

# Define the model and
hyperparameters

model = Ridge ()
param_grid = {’alpha’: [0.1, 1, 10,
1001}

grid_search = GridSearchCV(model,
param_grid, cv=5, scoring=’
neg_mean_squared_error’)

# Fit the model

grid_search.fit(X_train, y_train)

# Best model and performance

best_model = grid_search.
best_estimator_

predictions = best_model.predict (
X _test)

mse = mean_squared_error (y_test,
predictions)

print (f’Best Alpha:
best_params_["alpha"]},
msel}’)

{grid_search.
MSE: {

7.2. Visualizations
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8. MODEL EVALUATION METRIC

8.1. Performance Metrics

By and large, there are multiple ways of estimat-
ing the exhibition of such models, which are vital
for getting a superior comprehension of the model’s
precision and viability.

Mean Squared Error (MSE): This is the mean
squared error values normal of the square of the
contrast between anticipated sum and the genuine
sum. The MSE in the event that the model is little
means that a superior fit.

Mean Absolute Error (MAE): MAE processes the
normal of the absolute distinction among genuine
and anticipated values, which might interpreted as
be nearer to real errors contrasted with MSE.

R2 (Coefficient of Determination): 32 reflects the
extent to which variation in the dependent variable
can be explained by variation in the independent
variables. Because the aim of regression analysis is
to find a linear relationship between the variables,
the nearer to 1 the R? value is, the better the model
fits the data.

Root Mean Squared Error (RMSE): RMSE is the
square root of MSE and it measures an error rate
in the same unit as that of the dependent variable,
thus it is easier to understand this concept

Code 2. Model Building.

1| from sklearn.metrics
mean_absolute_error,

import
r2_score

3 |# Performance metrics
mean_absolute_error(y_test,
predictions)

4 |Mae =

s|r2 = r2_score(y_test, predictions)

6| rmse = np.sqrt(mse)

7| print (£ ’MAE: {mae}, R {r2}, RMSE
{rmsel}’)

8.2. Comparative Analysis

The observation of performance of a model be-
fore and after applying regularisations allows one
to analyse the effects of the techniques in question.
For example, L1 (Lasso) may result in sparse models
as it works to set some coefficients to zero, which
may be helpful in selection of features (KONG et
al., 2020) As for Ridge (L2 regularisation), it takes
down the coefficients but does not remove them
completely which might be helpful when working

with the multicollinearity scenario (MORADI; BE-
RANGI; MINAETI, 2020). In order to compare the
results obtained between two models that have im-
plemented different methods of regularisation we
are able to train the two models separately and then
compare performance metrics. It also serves the
purpose of choosing the most suitable MRI method
for the given dataset and the problem at hand.

Code 3. Model Building.

1|# Comparing Lasso and Ridge
2| from sklearn.linear_model import
Lasso

4|# Lasso model
s|lasso_model = Lasso(alpha=0.1)
¢|lasso_model.fit(X_train,
7|lasso_predictions = lasso_model.
predict (X_test)

s|lasso_mse = mean_squared_error (

y_train)

y_test, lasso_predictions)
9|lasso_mae = mean_absolute_error (
y_test, lasso_predictions)

w|lasso_r2 = r2_score(y_test,
lasso_predictions)
n|lasso_rmse = np.sqrt(lasso_mse)

- MSE: {lasso_msel},
{lasso_mael}, R {lasso_r?2
RMSE: {lasso_rmsel}’)

13 |print (f’Lasso
MAE :
I

8.3. Statistical Tests

That for instance, the F-test statistics can be em-
ployed to compare variance of different model and
thus to infer on the significance of the regularisa-
tion effects. The F-test assists in determining varia-
tions in the proportion between explained and un-
explained variance, which is useful in ascertaining
the efficiency of the model.

Code 4. Model Building.

1|from sklearn.feature_selection
import f_regression

3|# F-test

s|f_stat, p_val = f_regression(
X_train, y_train)

print (f’F-statistic:

{p_vall}’)

w

{f_stat}, p-

value:




By utilising these measures of performance and
statistical tools, it is possible to assess and compare
the contrast in the effectiveness of various types of
regularisation algorithms and choose the most ap-
propriate model for the given data set and situation.

9. CONCLUSION AND RECOMMENDATION

9.1. Conclusion

Regularisation techniques have been used in this
paper focusing on Lasso (L1) and Ridge (L2) for
linear regression model’s analysis. The current re-
search proves that these methods solve the problem
of increased model precision while avoiding overfit-
ting and multicollinearity. Lasso and Ridge essen-
tially helps in making the output more stable and
easier for interpretation by intaking penalties for
large coefficients. Cross-validation for the hyperpa-
rameters also works toward the effective selection
of the regularisation parameters, and therefore, add
strength and reliability of the models. In summary,
this work underlines the necessity of using a reg-
ularisation technique while constructing a linear
regression model in order to enhance its predictive
performance.

9.2. Recommendation

Drawing from the discussed analysis, therefore
the following practical measures are suggested
when using regularisation in linear regression mod-
els.

« Thorough Data Preprocessing: Always ensure
that the data gathered for modelling goes
through vigorous cleaning and preprocessing
to increase the chances of the model’s accuracy.
These have to do with handling of missing val-
ues, outliers and normalisation.

« Effective Feature Engineering: Pay attention to
the features that are being created or chosen
in order to improve the model’s performance.
Methods such as Lasso can be used to ease the
problem of choosing features where insignifi-
cant coefficients are encoded by the techniques
to zero.

« Application of Regularisation: We shall use
Lasso and Ridge regularisation to deal with
overfitting as well as multicollinearity issues. It
is especially valuable for sparse models, while

Ridge is helpful in handling with the problem
of features correlation.

« Cross-Validation for Hyperparameter Tun-
ing:  Cross-validate your models using
GridSearchCV particularly when tuning
hyperparameters in order to get the best
models. This makes certain that the model
performs well on data that had not been used
for model training.

« Visualisation Techniques: Use plots to inspect
the performance and certain problems of the
model. Common techniques like scatter plots,
residual plots, and learning curves all are useful
in detecting of overfitting as well as underfit-
ting.

 Further Research: Further research should look
at the possibilities of more elaborate methods
like Elastic Net, which is an improvement on
Lasso and Ridge techniques and applicable to
more extensive studies that utilise diverse sets
and learning algorithms.
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11. APPENDIX

X, X | X5 | X, | X5 | Y
1.2 | 15.4 | 24.5 | 38.0 | 45.1 | 230.4
4.5(11.2|27.8 | 29.4 | 38.9 | 190.2
73] 9.1 | 189 | 23.6 | 412 | 1758
24(19.6 | 29.0 | 31.5 | 46.7 | 255.3
56 | 13.7 [ 253 | 36.1 | 49.5 | 220.7
33| 88 [21.7| 288 |43.0 | 180.5
6.8 | 17.3 | 26.4 | 34.0 | 47.8 | 245.9
1.7 | 14.6 | 23.0 | 30.2 | 44.9 | 210.6
41105 | 27.1 329|403 | 195.4
59 [ 123|226 | 37.7 | 42.8 | 235.1

Table 1. Data

Code 5. Solution with Regularised Linear
Regression.

1| import numpy as np

2 |import pandas as pd

3|from sklearn.linear_model import
LinearRegression, Lasso, Ridge
4|from sklearn.model_selection import
train_test_split

© ® N o
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29

30

31

32

33

34

35

36

37

38

from sklearn.metrics import
mean_squared_error,
mean_absolute_error, r2_score
# Creating the dataset
data = {
’X17:
8.8
’X27:
13.7,
12.3],
’X37:
25.3,
22.6],
’X4 7
36.1,
37.71,
X5 7 :
49.5,
42.8],
Y’
255.3,
210.6,

(1.2, 4.5, )
6.8, 1.7, 4.1, 5.9],

[16.4, 11.2, 9.1, 19.6,
8.8, 17.3, 14.6, 10.5,

7.3, 2.4, 5.6,
1

[24.5, 27.8, 18.9, 29.0,
21.7, 26.4, 23.0, 27.1,

[38.0, 29.4,
28.8, 34.0, 30.2,

23.6, 31.5,
32.9,

[45.1, 38.9,
43.0, 47.8, 44.9,

41.2, 46.7,
40.3,

[230.4,
220.7,
195.4,

190.2,
180.5,
235.1]

175.8,
245.9,

df = pd.DataFrame (data)
af [[’>X1°>, ’X2°, ’X3’,
1]

df [’Y’]

X4, ’°X5

Y:

H*

Splitting the dataset into
training and testing sets

X _train, X_test, Y_train, Y_test =

train_test_split(X, Y, test_size

=0.2, random_state=42)

# Applying Linear Regression
lr = LinearRegression ()
lr.fit(X_train, Y_train)

Y _pred_1lr = 1lr.predict(X_test)

# Applying Lasso Regression

Lasso(alpha=0.1)

lasso.fit(X_train, Y_train)

Y _pred_lasso = lasso.predict(X_test
)

lasso =

# Applying Ridge Regression

ridge = Ridge(alpha=1.0)

ridge.fit(X_train, Y_train)

Y pred_ridge = ridge.predict(X_test
)
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# Evaluating the models
def evaluate_model(Y_test, Y_pred):

mse = mean_squared_error (Y_test
, Y_pred)
mae = mean_absolute_error (

Y_test, Y_pred)
r2 = r2_score(Y_test, Y_pred)
return mse, mae, 12

mse_lr, mae_lr, r2_1lr =
evaluate_model (Y_test, Y_pred_1r
)

mse_lasso, mae_lasso, r2_lasso
evaluate_model (Y_test,
Y_pred_lasso)

mse_ridge, mae_ridge, r2_ridge
evaluate_model (Y_test,
Y_pred_ridge)

# Results in a table format
results = {
’Model’: [’Linear Regression’,
’Lasso Regression’, ’Ridge
Regression’],

"MSE’: [mse_lr, mse_lasso,
mse_ridgel,

>MAE’: [mae_lr, mae_lasso,
mae_ridgel,

>R ’: [r2_1lr, r2 lasso,
r2_ridgel

results_df = pd.DataFrame (results)
print (results_df)

Model MSE | MAE | R?
Linear Regression | 30.94 | 4.97 | 0.95
Lasso Regression | 32.67 | 5.08 | 0.94
Ridge Regression | 31.22 | 5.01 | 0.95

Table 2. Evaluation Results
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